1 8 Ju l 2 00 1 The Number of Tableaux which Contain a Given

نویسنده

  • Aaron D. Jaggard
چکیده

For a (standard) Young tableau T on [k], say that a tableau T ′ on [n] contains T as a subtableau if the cells of T ′ containing the elements of [k] are arranged as in T . McKay, Morse, and Wilf recently introduced the idea of quasirandom permutations and used this to find the limiting probability (as n → ∞) that a tableau on [n] contains a given tableau on [k] as a subtableau. Stanley then used the theory of symmetric functions to obtain an exact formula for the number of tableaux on [n] which contain a given subtableau. Here we extend the quasirandom permutation approach to give another proof of Stanley’s formula, one which is independent of the theory of symmetric functions and group characters. Our method rests on an exact count of the n-involutions which contain a given k-permutation as a subsequence; we find that this number depends on the patterns of the initial sequences of the k-permutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 1 Ju l 2 00 8 On quasiinvariants of S n of hook shape

Chalykh, Veselov and Feigin introduced the notions of quasiinvariants for Coxeter groups, which is a generalization of invariants. In [2], Bandlow and Musiker showed that for the symmetric group Sn of order n, the space of quasiinvariants has a decomposition indexed by standard tableaux. They gave a description of basis for the components indexed by standard tableaux of shape (n− 1, 1). In this...

متن کامل

2 S ep 2 00 4 Subsequence containment by involutions

Inspired by work of McKay, Morse, and Wilf, we give an exact count of the involutions in Sn which contain a given permutation τ ∈ Sk as a subsequence; this number depends on the patterns of the first j values of τ for 1 ≤ j ≤ k. We then use this to define a partition of Sk, analogous to Wilf-classes in the study of pattern avoidance, and examine properties of this equivalence. In the process, w...

متن کامل

Domino tableaux, Schützenberger involution, and the symmetric group action

We define an action of the symmetric group S[ n 2 ] on the set of domino tableaux, and prove that the number of domino tableaux of weight β does not depend on the permutation of the weight β. A bijective proof of the well-known result due to J. Stembridge that the number of self–evacuating tableaux of a given shape and weight β = (β1, . . . , β[ n+1 2 ], β[ n2 ], . . . , β1), is equal to that o...

متن کامل

ar X iv : h ep - t h / 01 01 14 8 v 2 3 0 Ju l 2 00 1 Multidimensional Phase Space and Sunset Diagrams

We derive expressions for the phase-space of a particle of momentum p decaying into N particles, that are valid for any number of dimensions. These are the imaginary parts of so-called 'sunset' diagrams, which we also obtain. The results are given as a series of hypergeometric functions, which terminate for odd dimensions and are also well-suited for deriving the threshold behaviour.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001